PEDOMAN
Konstruksi dan Bangunan

Penggunaan agregat slag besi dan baja untuk campuran beraspal panas

DEPARTEMEN PEKERJAAN UMUM
Daftar isi

Daftar isi ... i-ii
Daftar tabel .. iii
Prakata ... iv
Pendahuluan .. v
1 Ruang lingkup ... 1
2 Acuan normatif .. 1
3 Istilah dan definisi .. 2
 3.1 Agregat slag .. 2
 3.2 Aspal keras .. 2
 3.3 BF Slag (blast furnace iron slag) .. 2
 3.4 BOS Slag (Basic Oxygen Steel Slag) .. 2
 3.5 Campuran beraspal panas ... 2
 3.6 EAF Slag (Electric Arc Steel Slag) .. 2
 3.7 Formula campuran kerja, FCK (Job Mix Formula, JMF) .. 3
 3.8 Kurva fuller ... 3
 3.9 Rongga diantara mineral (Void in mixed aggregates, VMA) .. 3
 3.10 Rongga udara (void in mixed, VIM) ... 3
 3.11 Rongga terisi aspal (void filled with asphalt, VFA) ... 3
 3.12 Slag .. 3
 3.13 Titik kontrol gradasi ... 3
 3.14 Zona terbatas ... 3
4 Ketentuan umum .. 4
 4.1 Penggunaan campuran beraspal panas .. 4
 4.2 Peralatan laboratorium .. 4
 4.3 Peralatan lapangan ... 4
 4.4 Tebal lapisan dan toleransi ... 4
 4.5 Pembatasan oleh cuaca ... 5
 4.6 Perbaikan perkerasan setelah pengujian ... 5
5 Ketentuan khusus ... 6
 5.1 Bahan .. 6
 5.1.1 Komponen bahan ... 6
 5.1.2 Agregat slag besi dan baja ... 6
 5.1.3 Agregat slag kasar .. 7
 5.1.4 Agregat slag halus .. 7
 5.1.5 Aspal .. 7
 5.1.6 Agregat standar .. 9
 5.1.6.1 Umum .. 9
 5.1.6.2 Agregat standar kasar ... 9
 5.1.6.3 Agregat standar halus ... 11
6 Campuran ... 12
 6.1 Gradasi gabungan agregat slag ... 12
 6.2 Berat jenis campuran agregat ... 12
 6.3 Komposisi umum dari campuran .. 12
 6.4 Prosedur rancangan campuran ... 14
 6.5 Formula campuran rancangan (FCR) .. 16
 6.6 Formula campuran kerja (FCK) ... 16
 6.7 Penerapan formula campuran kerja (FCK) dan toleransi campuran kerja (TCK) .. 17
7 Pelaksanaan .. 17
8 Pengukuran dan pembayaran ... 18
Lampiran A (Informatif) ... 21
Lampiran B (Informatif) Bagan alir pembuatan formula campuran kerja (FCK) 22
Lampiran C (Informatif) daftar nama dan lembaga .. 23
Daftar notasi ... 24
Bibliografi .. 24
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tebal rancangan campuran beraspal dan toleransi</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Persyaratan agregat slag kasar dan halus</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Persyaratan aspal keras</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Persyaratan aspal modifikasi</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Persyaratan agregat standar kasar</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Persyaratan agregat standar halus</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Gradasi gabungan agregat untuk campuran beraspal</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Ketentuan sifat-sifat campuran lataston untuk lalu-lintas rencana < 1 juta ESA</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>Ketentuan sifat-sifat Laston untuk lalu-lintas rencana 1- 10 juta ESA</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Ketentuan sifat-sifat campuran Laston dimodifikasi (AC modified)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>untuk Lalu-lintas rencana 1- 10 juta ESA</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Toleransi campuran kerja</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Mata pembayaran</td>
<td>20</td>
</tr>
</tbody>
</table>
Prakata

Pedoman penggunaan agregat slag untuk campuran beraspal panas ini diolah dari hasil penelitian dan adopsi dari spesifikasi campuran beraspal panas. Pedoman ini dimaksudkan sebagai acuan untuk memperoleh campuran beraspal panas menggunakan agregat slag yang akan digunakan dalam pekerjaan perkerasan jalan.

Pedoman ini dirumuskan melalui proses Konsensus sesuai Pedoman No. 9 BSN tahun 2000 dengan melibatkan pakar-pakar dan praktisi pada bidang perkerasan jalan, akademisi, dan stakeholders lainnya. Tata cara penulisan pedoman ini mengacu kepada Pedoman BSN No. 8 tahun 2000 yang dikeluarkan oleh Badan Standardisasi Nasional.
Pendahuluan

Agregat besi dan baja adalah salah satu bahan alternatif pengganti untuk perkerasan jalan. Apabila persediaan agregat standar terbatas.

Berdasarkan penelitian yang dilakukan di Pusat Litbang Prasarana Transportasi Badan Litbang Pekerjaan Umum, agregat slag memenuhi persyaratan agregat standar dimana berat jenis slag lebih tinggi dari agregat standar, sehingga menyebabkan volume pekerjaan lebih kecil dari standar, untuk itu dilakukan upaya pencampuran sebagian agregat slag dengan bahan lainnya, pencampuran ini akan menurunkan berat jenis campuran, sehingga volume pekerjaan akan tercapai, dan kekuatan campuran perkerasan lebih baik.

Pedoman penggunaan agregat slag besi dan baja untuk campuran beraspal panas ini mengikuti Buku Spesifikasi Campuran beraspal, dan diharapkan akan memberikan keterangan yang cukup bagi produsen, perencana dan pelaksana.

Dengan diimplementasikannya pedoman ini, penggunaan agregat slag besi dan baja yang merupakan produk samping pabrik besi dan baja dapat dimanfaatkan.
Pedoman penggunaan agregat slag besi dan baja untuk campuran beraspal panas

1 Ruang lingkup

Pedoman ini mengatur tata cara penggunaan agregat slag besi dan baja pada proses pembuatan campuran beraspal panas yang meliputi persyaratan agregat slag besi dan baja, persyaratan bahan lainnya, perencanaan campuran dan pelaksanaan campuran.

2 Acuan normatif

- SNI 03-1968-1990, Metode pengujian tentang analisis saringan agregat halus dan agregat kasar
- SNI 03-1969-1990, Metode pengujian Berat Jenis dan Penyerapan air agregat kasar
- SNI 03-1970-1990, Metode pengujian Berat Jenis dan Penyerapan air agregat halus
- SNI 03-2417-1991, Metode pengujian keausan agregat dengan mesin Los Angeles
- SNI 03-2439-1991, Metode pengujian kelekatan agregat terhadap aspal
- SNI 03-3407-1994, Metode pengujian kekekalan bentuk agregat terhadap larutan natrium sulfat dan magnesium sulfat
- SNI 03-4142-1996, Metode pengujian jumlah bahan dalam agregat yang lolos saringan no. 200 (0,075 mm)
- SNI 03-4428-1997, Metode pengujian agregat halus atau pasir yang mengandung bahan plastis dengan cara setara pasir
- SNI 03-6399-2000, Tata cara pengambilan contoh aspal
- SNI 03-6819-2002, Spesifikasi agregat halus untuk campuran beraspal
- SNI 03-6885-2002, Metode pengujian noda aspal minyak
- SNI 03-6893-2002, Metode pengujian berat jenis maksimum campuran beraspal
- SNI 03-6894-2002, Metode pengujian kadar aspal dari campuran beraspal cara Sentrifus
- SNI 06-2432-1991, Metode pengujian daktilitas bahan-bahan aspal
- SNI 06-2433-1991, Metoda pengujian titik nyala dan titik bakar dengan alat cleveland open cup
- SNI 06-2434-1991, Metoda pengujian titik lembek aspal dan ter
- SNI 06-2440-1991, Metode pengujian kehilangan berat minyak dan aspal dengan cara A
- SNI 06-2441-1991, Metode pengujian berat jenis aspal padat
- SNI 06-2456-1991, Metode pengujian penetrasi bahan-bahan bitumen
- SNI 06-4797-1998, Metode pengujian pemulihan aspal dengan alat penguap putar
- SNI 06-6441-2000, Metode pengujian viskositas aspal minyak dengan alat Brookfield Termosel
- SNI 13-6717-2002, Tata cara penyiaapan benda uji dari contoh agregat
- RSNI S-01-2003, Spesifikasi aspal berdasarkan penetrasi
- RSNI M 12-2004, Metode pengujian kelarutan aspal
3 Istilah dan definisi

Istilah dan definisi yang digunakan dalam pedoman ini sebagai berikut:

3.1 agregat slag
limbah besi dan baja berbentuk bongkah panas yang telah diproses melalui penyemprotan air tekanan tinggi sehingga bongkahan slag pecah menjadi ukuran butir tertentu

3.2 aspal keras
aspal keras merupakan residu destilasi minyak bumi yang bersifat viskoelastik

3.3 BF Slag (Blast furnace iron slag)
slag panas hasil limbah proses pembuatan besi, berbentuk bongkah, dipecah dengan pendingin udara

3.4 BOS Slag (Basic oxygen steel slag)
slag yang diperoleh dari hasil samping pembuatan baja dengan tanur tinggi, yang dipecah dengan menggunakan pendingin udara dan air bertekanan tinggi, kemudian disaring

3.5 campuran beraspal panas
campuran yang terdiri dari kombinasi agregat yang dicampur dengan aspal. pencampuran dilakukan sedemikian rupa sehingga permukaan agregat terselimuti aspal dengan seragam. Untuk mengeringkan agregat dan memperoleh kekentalan aspal yang mencukupi dalam mencampur dan mengerjakannya, maka kedua-duanya harus dipanaskan masing-masing pada temperatur tertentu

3.6 EAF Slag (Electric arc steel slag)
slag yang diperoleh dari hasil samping pembuatan baja dengan tungku listrik, yang dipecah dengan menggunakan pendingin udara dan air bertekanan tinggi dan disaring
3.7
Formula campuran kerja, FCK (Job mix formula, JMF)
merupakan formula yang dipakai sebagai acuan untuk pembuatan campuran. Formula tersebut harus sesuai dan memenuhi persyaratan. Proses pembuatannya telah melalui beberapa tahapan yaitu dari mulai formula campuran rancangan, kemudian uji pencampuran di unit pencampur aspal dan uji penghamparan dan pemadatan di lapangan

3.8
kurva fuller
kurva gradasi dimana kondisi campuran memiliki kepadatan maksimum dengan rongga diantara mineral agregat (VIM) yang minimum

3.9
rongga di antara mineral agregat (Void in mixed aggregates, VMA)
volume rongga yang terdapat diantara partikel agregat suatu campuran beraspal yang telah dipadatkan, yaitu rongga udara dan volume kadar aspal efektif, yang dinyatakan dalam persen terhadap volume total benda uji. Volume agregat dihitung dari berat jenis bulk (bukan berat jenis efektif atau berat jenis nyata)

3.10
rongga udara (Void in mixed, VIM)
volume total udara yang berada diantara partikel agregat yang terselimuti aspal dalam suatu campuran yang telah dipadatkan, dinyatakan dengan persen volume bulk suatu campuran

3.11
rongga terisi aspal (Void filled with asphalt, VFA)
bagian dari rongga yang berada di antara mineral agregat (VMA) yang terisi oleh aspal efektif, dinyatakan dalam persen

3.12
slag
limbah dari proses pembuatan besi dan baja, yang berbentuk bongkahan

3.13
titik kontrol gradasi
batas-batas titik minimum dan maksimum untuk masing-masing gradasi yang digunakan. Gradasi agregat harus berada diantara titik kontrol tersebut

3.14
zona terbatas
suatu zona yang terletak pada garis kepadatan maksimum (kurva fuller) antara ukuran menengah 2,36 mm (no. 8) atau 4,75 mm (no. 4) dan ukuran 300 mikron (no. 50). Gradasi agregat diharapkan menghindari daerah ini
4 Ketentuan umum

4.1 Penggunaan campuran beraspal panas

Agregat slag besi dan baja dapat digunakan sebagai pengganti seluruh agregat standar atau sebagai pengganti sebagian dari agregat standar. Penggunaan agregat ini dilakukan apabila ketersediaan agregat standar tidak mencukupi.

4.2 Peralatan laboratorium

Seluruh peralatan laboratorium yang digunakan untuk pengujian di laboratorium harus memenuhi ketentuan yang disyaratkan untuk laboratorium uji campuran aspal.

4.3 Peralatan lapangan

Seluruh peralatan lapangan yang digunakan dalam kegiatan penghamparan harus memenuhi ketentuan yang disyaratkan untuk penghamparan campuran aspal panas.

4.4 Tebal lapisan dan toleransi

a. Tebal setiap lapisan campuran beraspal harus dipantau dengan benda uji inti (core) yang diambil oleh Pelaksana dibawah pengawasan Direksi. Lokasi pengambilan benda uji inti harus dilakukan sebagaimana yang diperintahkan oleh Direksi dengan ketentuan :

1) pengambilan contoh dalam arah melintang dari masing-masing penampang lajur yang diperiksa sekurang-kurangnya 2 buah pada setiap lokasi;
2) jarak memanjang dari penampang melintang yang diperiksa tidak lebih dari 200 meter dan harus sedemikian rupa hingga jumlah total benda uji inti yang diambil dalam setiap ruas yang diukur untuk pembayaran tidak kurang dari enam;
3) toleransi tebal lapisan adalah seperti ditunjukkan pada Tabel 1, bilamana tebal lapisan tidak memenuhi persyaratan toleransi maka Direksi dapat memerintahkan pengambilan benda uji inti tambahan disekitar lokasi yang tidak memenuhi syarat ketebalan sebelum pembongkaran dan pelapisan kembali;

b. Tebal aktual campuran beraspal menggunakan agregat slag besi dan baja yang dihampar di setiap ruas dari pekerjaan, didefinisikan sebagai tebal rata-rata dari semua benda uji inti yang diambil dari ruas tersebut;

c. Tebal aktual campuran beraspal yang dihampar, sebagaimana ditetapkan diatas, harus sama atau lebih besar dari tebal nominal rancangan yang ditentukan dalam Gambar Rencana dan sesuai dengan Tabel 1;

d. Bilamana campuran beraspal yang dihampar lebih dari satu lapis, seluruh tebal campuran beraspal tidak boleh kurang dari toleransi yang disyaratkan dalam tebal nominal rancangan yang disyaratkan dalam Gambar Rencana;

<table>
<thead>
<tr>
<th>Jenis Campuran</th>
<th>Simbol</th>
<th>Nominal Tebal Minimum (mm)</th>
<th>Toleransi Tebal (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lataston</td>
<td>Lapis Aus</td>
<td>HRS – WC 30</td>
<td>± 3,0</td>
</tr>
<tr>
<td></td>
<td>Lapis Pondasi</td>
<td>HRS - Base 35</td>
<td></td>
</tr>
<tr>
<td>Laston</td>
<td>Lapis Aus</td>
<td>AC- WC 40</td>
<td>± 3,0</td>
</tr>
<tr>
<td></td>
<td>Lapis Pengikat</td>
<td>AC – BC 50</td>
<td>± 4,0</td>
</tr>
<tr>
<td></td>
<td>Lapis Pondasi</td>
<td>AC - Base 60</td>
<td>± 5,0</td>
</tr>
</tbody>
</table>
e. Untuk semua jenis campuran beraspal, berat aktal campuran yang dihampar harus dipantau oleh Pelaksana dengan menimbang setiap muatan truk yang meninggalkan pusat instalasi pencampuran aspal. Untuk setiap ruas pekerjaan yang diukur untuk pembayaran, bilamana berat aktal bahan terhampar yang dihitung dari timbangan adalah kurang ataupun lebih lima persen dari berat yang dihitung dari ketebalan rata-rata dan kepadatan rata-rata benda uji inti (core), maka Direksi harus mengambil tindakan untuk menyelidiki sebab terjadinya selisih berat ini sebelum menyetujui pembayaran bahan yang telah dihampar. Investigasi oleh Direksi dapat dilakukan, tetapi tidak terbatas pada hal-hal berikut ini:

1) memerintahkan Pelaksana untuk lebih sering mencari lokasi atau lebih banyak mengambil benda uji inti (core);
2) memeriksa penerapan dan ketepatan timbangan serta peralatan dan prosedur pengujian di laboratorium;
3) memperoleh hasil pengujian laboratorium yang independen dan pemeriksaan kepadatan campuran beraspal yang dicapai di lapangan;
4) Menetapkan suatu sistem perhitungan dan pencatatan truk secara terinci.

Biaya untuk setiap penambahan atau meningkatnya frekwensi pengambilan benda uji inti, untuk survei geometric tambahan ataupun pengujian laboratorium, untuk pencatatan muatan truk, ataupun tindakan lainnya yang dianggap perlu oleh Direksi untuk mencari penyebab dilampauinya toleransi berat harus ditanggung oleh Pelaksana, namun apabila hasil pengujian sesuai dengan toleransi maka biaya penambahan tersebut harus ditanggung oleh Direksi.

f. Perbedaan kerataan permukaan campuran lapis aus (HRS-WC dan AC- WC) yang telah selesai dikerjakan harus memenuhi ketentuan berikut:

1) penampang melintang;
 Bilamana diukur dengan mistar lurus sepanjang 3 meter yang diletakkan tepat di atas sumbu jalan tidak boleh melampaui 5 mm untuk lapis aus atau 10 mm untuk lapis pondasi. Perbedaan setiap dua titik pada setiap penampang melintang tidak boleh melampaui 5 mm dari elevasi yang dihitung dari penampang melintang yang ditunjukkan dalam Gambar Rencana;
2) Kerataan permukaan;
 Setiap ketidakakuratan individu bila diukur dengan mistar lurus berjalan (rolling) sepanjang 3 meter yang diletakkan sejajar dengan sumbu jalan tidak boleh melampaui 5 mm.

g. Bilamana campuran beraspal digunakan sebagai lapis perata sekaligus sebagai lapis penguat, maka tebal lapisan tidak boleh melebihi 2,5 kali tebal minimal yang diberikan dalam Tabel 1.

4.5 Pembatasan oleh cuaca

Campuran Panas menggunakan agregat slag besi dan baja hanya boleh dihampar bila permukaan jalan telah disiapkan dan dalam keadaan cenderung serta diperkirakan tidak akan turun hujan selama pekerjaan berlangsung.

4.6 Perbaikan perkerasan setelah pengujian

Lubang-lubang bekas pengujian akibat pengambilan contoh inti atau lainnya harus segera diisi kembali dengan campuran panas yang sesuai.
5 Ketentuan khusus

5.1 Bahan

5.1.1 Komponen bahan

Persetujuan sumber agregat slag besi dan baja atau komponen bahan lainnya harus diperoleh dari Direksi sebelum pengiriman bahan. Contoh masing-masing bahan harus dikirim sebagaimana diperintahkan.

5.1.2 Agregat slag besi dan baja

a) Persyaratan kimia

 Kandungan Sulfur dalam setiap slag besi dan baja tidak boleh lebih dari 2,5%.

b) Persyaratan fisik

 1) Agregat slag besi dan baja yang dapat digunakan harus memenuhi persyaratan gradasi sesuai spesifikasi yang berlaku;
 2) Karakteristik agregat slag yang digunakan harus memenuhi tabel 2, jika terjadi pencampuran antara slag besi dan baja maka persyaratan karakteristik agregat slag yang berlaku adalah persyaratan karakteristik untuk slag baja;
 3) agregat slag harus diperoleh dari hasil samping proses pembuatan besi dan baja yang telah disetujui untuk dikirim dalam bentuk curah untuk memudahkan penanganannya;
 4) agregat slag yang digunakan dalam pekerjaan ini harus sedemikian rupa sehingga campuran beraspal yang dibuat sesuai formula campuran rancangan memenuhi semua sifat-sifat campuran yang disyaratkan pada Tabel 8 sampai dengan Tabel 10;
 5) sebelum pekerjaan dimulai pelaksana harus menyiapkan cadangan fraksi-fraksi agregat slag besi dan baja untuk campuran beraspal yang cukup untuk pekerjaan, paling sedikit satu bulan (atau paling sedikit 40% dari total pekerjaan yang akan dikerjakan) dan selanjutnya harus memelihara cadangan tersebut hingga satu bulan sebelum pekerjaan selesai;
 6) agregat slag untuk campuran harus tersedia dan dipasok di bin dingin paling sedikit dalam tiga fraksi;
 7) masing-masing fraksi agregat slag harus disimpan secara terpisah dan masing-masing agregat tersebut harus dialirkan ke dalam tempat pengaduk melalui bin dingin yang terpisah sehingga perbandingan gradasi agregat slag dapat dikontrol dengan seksama.
 8) pengiriman agregat slag harus disertai dokumen pengiriman yang memuat informasi berikut:
 - sumber pabrik
 - kode pengenal antara lain, fraksi agregat slag
Tabel 2 Persyaratan agregat slag kasar dan halus

<table>
<thead>
<tr>
<th>Sifat-sifat agregat slag</th>
<th>Metoda Pengujian</th>
<th>Satuan</th>
<th>Slag besi (BFS)</th>
<th>slag baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat jenis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- bulk</td>
<td>SNI 03-1969-1990</td>
<td>Kg/m³</td>
<td>min 2,5</td>
<td>min 3,3</td>
</tr>
<tr>
<td>- SSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Apparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penyerapan terhadap air</td>
<td>SNI 03-1969-1990</td>
<td>%</td>
<td>maks 3</td>
<td>maks 3</td>
</tr>
<tr>
<td>Keausan agregat dengan mesin Los Angeles</td>
<td>SNI 03-2417-1991</td>
<td>%</td>
<td>maks 40</td>
<td>maks 40</td>
</tr>
<tr>
<td>Kekekalan bentuk agregat terhadap larutan natrium atau magnesium sulfat</td>
<td>SNI 03-3407-1994</td>
<td>%</td>
<td>-</td>
<td>maks 4</td>
</tr>
<tr>
<td>Kelekatan agregat terhadap aspal</td>
<td>SNI 03-2439-1991</td>
<td>%</td>
<td>min 95</td>
<td>min 95</td>
</tr>
<tr>
<td>Nilai setara pasir (*)</td>
<td>SNI 03-4428-1997</td>
<td>%</td>
<td>min 50</td>
<td>min 50</td>
</tr>
<tr>
<td>Partikel pipih dan lonjong (**)</td>
<td>ASTM D 4791</td>
<td>%</td>
<td>maks 10</td>
<td>maks 10</td>
</tr>
<tr>
<td>Material lolos saringan No.200</td>
<td>SNI 03-4142 -1996</td>
<td>%</td>
<td>kasar maks 1</td>
<td>kasar maks 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>halus maks 1</td>
<td>halus maks 8</td>
</tr>
</tbody>
</table>

Catatan:
(*) Sifat setara pasir untuk agregat slag halus
(**) Pengujian dengan perbandingan lengan alat uji terhadap poros 1 : 5.

5.1.3 Agregat slag kasar

a) Fraksi agregat slag kasar untuk keperluan pengujian harus terdiri atas agregat pecah dan harus disediakan dalam ukuran-ukuran nominal;
b) Fraksi agregat slag kasar dalam pedoman ini adalah agregat yang tertahan saringan no. 8 (2,36mm);
c) Agregat slag kasar tidak boleh kotor dan berdebu dan jumlah bahan yang lolos saringan No. 200 (0,075 mm) tidak boleh lebih besar dari 1% (lihat tabel 2);
d) Agregat slag kasar harus keras, awet, bebas dari lempung atau bahan-bahan lain yang tidak dikehendaki dan harus memenuhi persyaratan.

5.1.4 Agregat slag halus

a) Agregat slag halus terdiri dari hasil pemecah slag dengan ukuran lolos saringan No. 8 (2,36 mm);
b) Agregat slag halus harus terdiri atas partikel-partikel yang bersih, keras, tidak mengandung lempung atau bahan lain yang tidak dikehendaki. Abu batu slag harus dihasilkan dari slag yang memenuhi persyaratan dan tidak boleh mengandung bahan yang lolos saringan No. 200, 0,075 mm (SNI 03-4142-1996) lebih dari 8% dan diuji dengan Setara Pasir (SNI 03-4428-1997) tidak kurang dari 50% lihat tabel 2;
c) Agregat slag halus hasil pemecahan slag dilindungi dari hujan serta ditimbun dalam cadangan yang terpisah serta harus dipasok ke dalam alat pencampur menggunakan bin dingin yang terpisah, sehingga perbandingan antara agregat slag halus hasil pemecahan dapat dikontrol dengan cermat;

5.1.5 Aspal

a) Aspal yang digunakan harus salah satu dari jenis aspal keras yaitu pen 40 atau pen 60 sesuai tabel 3, dan aspal modifikasi dengan polimer yang memenuhi persyaratan pada tabel 4, campuran yang dihasilkan harus memenuhi ketentuan campuran beraspal pada tabel 8 sampai dengan tabel 10 sesuai dengan jenis campuran yang ditetapkan dalam gambar rencana atau petunjuk Direksi.
Pengambilan contoh aspal dilaksanakan sesuai SNI 03-6399-2000, pengambilan contoh aspal dari tiap truk tangki harus dilaksanakan pada bagian atas, tengah dan bawah. Contoh pertama yang diambil harus langsung diuji di laboratorium untuk memperoleh nilai penetrasi dan titik lembek. Selanjutnya untuk pengujian aspal yang menyatakan bahwa aspal tersebut dapat digunakan, pengambilan contoh diambil dari tangki penyimpanan dan sebelum hasil final pengujian aspal selesai, aspal tersebut belum dapat digunakan untuk campuran beraspal.

b) Untuk pengujian contoh inti, campuran beraspal harus diekstraksi sesuai cara SNI 03-6894-2002, setelah konsentrasi larutan aspal yang terekstraksi mencapai 200 ml, partikel mineral yang terkandung harus dipindahkan ke dalam suatu sentrifus, pemindahan ini dianggap memenuhi bilamana kadar abu dalam aspal yang diperoleh kembali tidak melebihi 1% (dengan pembakaran). Aspal harus diperoleh kembali dari larutan sesuai SNI 03-4797-1988.

Tabel 3 Persyaratan aspal keras

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Metode</th>
<th>Persyaratan (RSNI S-01-2003)</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetrasi, 25°C, 5 dtk, 100 gr</td>
<td>SNI 06-2456-1991</td>
<td>Pen 40</td>
<td>Pen 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 - 59</td>
<td>60 - 79</td>
</tr>
<tr>
<td>Titik lembek</td>
<td>SNI 06-2434-1991</td>
<td>51 - 63</td>
<td>48 - 53</td>
</tr>
<tr>
<td>Titik Nyala</td>
<td>SNI 06-2433-1991</td>
<td>min 200</td>
<td>min 200</td>
</tr>
<tr>
<td>Daktilitas</td>
<td>SNI 06-2432-1991</td>
<td>min 100</td>
<td>min 100</td>
</tr>
<tr>
<td>Penurunan berat (TFOT)</td>
<td>SNI 06-2440-1991</td>
<td>maks 0,8</td>
<td>maks 0,8</td>
</tr>
<tr>
<td>Penetrasi setelah TFOT, 0,1 mm</td>
<td>SNI 06-2456-1991</td>
<td>min 58</td>
<td>min 54</td>
</tr>
<tr>
<td>Daktilitas setelah TFOT, cm</td>
<td>SNI 06-2432-1991</td>
<td>-</td>
<td>min 50</td>
</tr>
<tr>
<td>Kelarutan dalam TCE</td>
<td>RSNI M 12 - 2004</td>
<td>min 99</td>
<td>min 99</td>
</tr>
<tr>
<td>Berat jenis</td>
<td>SNI 06-2441-1991</td>
<td>min 1,0</td>
<td>min 1,0</td>
</tr>
<tr>
<td>Uji Noda pada Aspal (spot test)</td>
<td>SNI 03-6885-2000</td>
<td>Negatif</td>
<td>Negatif</td>
</tr>
</tbody>
</table>

- Standar Naphta
- Naphta Xylene
- Heptane Xylene

Catatan: Penggunaan pengujian spot test adalah pilihan (optional). Apabila disyaratkan direksi dapat menentukan pelarut yang akan digunakan, naphta, naphta xylene atau heptane xylene.
Tabel 4 Persyaratan aspal modifikasi

<table>
<thead>
<tr>
<th>Uraian</th>
<th>Metode</th>
<th>Persyaratan</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>min</td>
<td>maks</td>
</tr>
<tr>
<td>Penetrasi, 25°C, 5 dtk, 100 gr</td>
<td>SNI 06-2456-1991</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Titik lembek</td>
<td>SNI 06-2434-1991</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>Titik Nyala</td>
<td>SNI 06-2433-1991</td>
<td>225</td>
<td>-</td>
</tr>
<tr>
<td>Daktilitas, 25°C</td>
<td>SNI 06-2432-1991</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Berat jenis</td>
<td>SNI 06-2441-1991</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Kekentalan pada 135°C,</td>
<td>SNI 03-6441-2000</td>
<td>300</td>
<td>2000</td>
</tr>
<tr>
<td>Stabilitas penyimpanan pada</td>
<td>Shell Bitumen 1995</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>163°C selama 48 jam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Perbedaan titik lembek, antara bagian atas dan bawah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelarutan dalam TCE</td>
<td>RSNI M 12 - 2004</td>
<td>99</td>
<td>-</td>
</tr>
<tr>
<td>Penurunan berat (TFOT)</td>
<td>SNI 06-2440-1991</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Perbedaan penetrasi setelah TFOT, 0,1 mm</td>
<td>SNI 06-2456-1991</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>Perbedaan titik lembek setelah TFOT, °C</td>
<td>SNI 06-2434-1991</td>
<td>-</td>
<td>6,5</td>
</tr>
<tr>
<td>Elastic recovery pada 25°C</td>
<td>AASHTO T 301 - 1995</td>
<td>30</td>
<td>-</td>
</tr>
</tbody>
</table>

5.1.6 Agregat standar

5.1.6.1 Umum

a. Agregat standar yang akan digunakan dalam pekerjaan harus sedemikian rupa agar campuran aspal, yang proporsinya dibuat sesuai dengan rumus perbandingan campuran, memenuhi semua ketentuan yang disyaratkan dalam tabel 8 sampai tabel 10;

b. Agregat tidak boleh digunakan sebelum disetujui terlebih dahulu oleh Direksi. Bahan harus ditumpuk sesuai dengan ketentuan;

c. Sebelum memulai pekerjaan Pelaksana harus menyiapkan cadangan fraksi-fraksi agregat standar untuk campuran beraspal yang cukup untuk pekerjaan, paling sedikit satu bulan (atau paling sedikit 40% dari total pekerjaan yang akan dikerjakan) dan selanjutnya harus memelihara cadangan tersebut hingga satu bulan sebelum pekerjaan selesai;

d. Dalam pemilihan sumber agregat, Pelaksana dianggap sudah memperhitungkan penyerapan aspal oleh agregat. Variasi kadar aspal akibat tingkat penyerapan aspal yang berbeda, tidak dapat diterima sebagai alasan untuk negosiasi kembali harga satuan dari campuran aspal;

e. Penyerapan air oleh agregat maksimum 3%;

f. Berat jenis (specific gravity) agregat standar kasar dan agregat standar halus minimum 2,5 dan tidak boleh berbeda lebih dari 0,2.
5.1.6.2 Agregat standar kasar

a. Fraksi agregat standar kasar untuk rancangan adalah yang tertahan ayakan No. 8 (2,36 mm) dan haruslah bersih, keras, awet dan bebas dari lempung atau bahan yang tidak dikehendaki lainnya dan memenuhi ketentuan yang diberikan tabel 5;

b. Fraksi agregat standar kasar terdiri dari batu pecah atau kerikil pecah dan harus disiapkan dalam ukuran nominal tunggal. Ukuran maksimum agregat adalah satu ayakan yang lebih besar dari ukuran nominal maksimum. Ukuran nominal maksimum adalah satu ayakan yang lebih kecil dari ayakan pertama (teratas) dengan bahan tertahan kurang dari 10%;

c. Agregat kasar harus mempunyai angularitas seperti yang disyaratkan dalam tabel 5. Angularitas agregat kasar didefinisikan sebagai persen terhadap berat agregat yang lebih besar dari 4,75 mm dengan muka bidang pecah satu atau lebih. (Pennsylvania DoT's Test Method No.621);

d. Fraksi agregat standar kasar harus ditumpuk terpisah dan harus dipasok ke instalasi pen campur aspal dengan pemasok penampung dingin (cold bin feeds) sedemikian rupa sehingga gradasi gabungan agregat dapat dikendalikan dengan baik;

e. Batas-batas yang ditentukan dalam tabel 5, untuk partikel kepipihan dan kelonjongan dapat dinaikkan oleh Direksi bilamana agregat tersebut memenuhi semua ketentuan lainnya dan semua upaya yang dapat dipertanggungjawabkan telah dilakukan untuk memperoleh bentuk partikel agregat yang baik.

Tabel 5 Persyaratan agregat standar kasar

<table>
<thead>
<tr>
<th>Pengujian</th>
<th>Metode</th>
<th>Persyaratan min</th>
<th>Persyaratan maks</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat jenis</td>
<td></td>
<td></td>
<td></td>
<td>Kg/m³</td>
</tr>
<tr>
<td>- bulk</td>
<td>SNI 03-1969-1990</td>
<td>2,5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- SSD</td>
<td></td>
<td>2,5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Apparent</td>
<td></td>
<td>2,5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Penyerapan terhadap air</td>
<td>SNI 03-1969-1990</td>
<td>-</td>
<td>3</td>
<td>%</td>
</tr>
<tr>
<td>Abrasi dengan mesin Los Angeles</td>
<td>SNI 03-2417-1991</td>
<td>-</td>
<td>40</td>
<td>%</td>
</tr>
<tr>
<td>Kekekalan bentuk agregat terhadap larutan natrium atau magnesium sulfat</td>
<td>SNI 03-3407-1994</td>
<td>-</td>
<td>12</td>
<td>%</td>
</tr>
<tr>
<td>Kelekatan agregat terhadap aspal</td>
<td>SNI 03-2439-1991</td>
<td>95</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Angularitas (kedalaman dari permukaan < 10 cm)</td>
<td>DoT Pennsylvania Test Method PTM No. 621</td>
<td>95/90</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Angularitas (kedalaman dari permukaan ≥ 10 cm)</td>
<td></td>
<td>80/75</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Partikel pipih dan Lonjong (*)</td>
<td>ASTM D 4791</td>
<td>-</td>
<td>10</td>
<td>%</td>
</tr>
<tr>
<td>Material lolos saringan no.200</td>
<td>SNI 03-4142-1996</td>
<td>-</td>
<td>1</td>
<td>%</td>
</tr>
</tbody>
</table>

Catatan
80/75 menunjukkan bahwa 80% agregat kasar mempunyai muka bidang pecah satu atau lebih dan 75% agregat kasar mempunyai muka bidang pecah dua atau lebih.
(*) Pengujian dengan perbandingan lengan alat uji terhadap poros 1: 5.
5.1.6.3 Agregat standar halus

a. Agregat standar halus dari sumber bahan manapun, harus terdiri dari pasir atau pengayakan batu pecah dan terdiri dari bahan yang lolos ayakan No.8 (2,36 mm), sesuai SNI 03-6819-2002;

b. Fraksi agregat standar halus pecah mesin dan pasir harus ditumpuk terpisah dengan agregat kasar;

c. Pasir boleh digunakan dalam campuran aspal. Persentase maksimum yang disarankan untuk laston (AC) adalah 15%;

d. Agregat standar halus harus dari bahan yang bersih, keras, bebas dari lempung atau bahan yang tidak dikehendaki lainnya. Batu pecah halus diperoleh dari batu yang memenuhi persyaratan. Agar dapat memenuhi persyaratan, batu pecah harus diproduksi dari batu yang bersih. Bahan standar halus dan pemasok pemecah batu (crusher feed) harus diayak dan ditempatkan tersendiri sebagai bahan yang tak terpakai (kulit batu) sebelum proses pemecahan kedua (secondary crushing);

e. Agregat standar halus atau pasir harus ditumpuk terpisah dan harus dipasok ke instalasi pencampur aspal dengan menggunakan pemasok penampung dingin (cold bin feeds) yang terpisah sedemikian rupa sehingga rasio agregat pecah halus atau pasir dapat dikontrol dengan baik;

<table>
<thead>
<tr>
<th>Pengujian</th>
<th>Metode</th>
<th>Satuan</th>
<th>Persyaratan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berat jenis</td>
<td>SNI 03-1979-1990</td>
<td>Kg/m³</td>
<td>min 2,5 max -</td>
</tr>
<tr>
<td>- bulk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SSD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Apparent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penyerapan terhadap air</td>
<td>SNI 03-1979-1990</td>
<td>%</td>
<td>- 3</td>
</tr>
<tr>
<td>Nilai setara pasir</td>
<td>SNI 03-4428-1997</td>
<td>%</td>
<td>- 50</td>
</tr>
<tr>
<td>Material lolos saringan No.200</td>
<td>SNI 03-4142-1996</td>
<td>%</td>
<td>- 8</td>
</tr>
</tbody>
</table>
6 Campuran

6.1 Gradasi gabungan agregat slag

Gradasi agregat gabungan untuk campuran beraspal, ditunjukkan dalam persen terhadap berat agregat, harus memenuhi batas-batas dan khusus untuk Laston harus berasa di luar Daerah Larangan (Restriction Zone) yang diberikan dalam Tabel 7. Gradasi agregat gabungan harus mempunyai jarak terhadap batas-batas toleransi yang diberikan.

<table>
<thead>
<tr>
<th>Ukuran ayakan</th>
<th>% Berat Yang Lolos</th>
<th>Laston (HRS)</th>
<th>Laston (AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM (mm)</td>
<td>WC Base</td>
<td>WC BC Base</td>
<td>Base</td>
</tr>
<tr>
<td>1½"</td>
<td>37.5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1"</td>
<td>25</td>
<td>100</td>
<td>90 – 100</td>
</tr>
<tr>
<td>¾"</td>
<td>19</td>
<td>100</td>
<td>90-100</td>
</tr>
<tr>
<td>½"</td>
<td>12.5</td>
<td>90-100</td>
<td>90-100</td>
</tr>
<tr>
<td>3/8"</td>
<td>9.5</td>
<td>75-85</td>
<td>65-100</td>
</tr>
<tr>
<td>No.8</td>
<td>2.36</td>
<td>50-72</td>
<td>35-55</td>
</tr>
<tr>
<td>No.16</td>
<td>1.18</td>
<td>25.6-31.6</td>
<td>22.3-28.3</td>
</tr>
<tr>
<td>No.30</td>
<td>0.600</td>
<td>19.1-23.1</td>
<td>16.7-20.7</td>
</tr>
<tr>
<td>No.200</td>
<td>0.075</td>
<td>15.5</td>
<td>13.7</td>
</tr>
</tbody>
</table>

DAERAH LARANGAN

No.4	4.75	-	-
No.8	2.36	39.1	34.6
No.16	1.18	25.6-31.6	22.3-28.3
No.30	0.600	19.1-23.1	16.7-20.7
No.50	0.300	15.5	13.7

Catatan :
(1) Untuk agregat HRS-WC dan HRS-Base, paling sedikit 80% agregat lolos ayakan No.8 (2,36 mm) dan juga lolos ayakan No.30 (0,600 mm).
(2) Untuk AC, digunakan titik kontrol gradasi agregat, berfungsi sebagai batas-batas rentang utama yang harus ditempati oleh gradasi-gradiasi tersebut. Batas-batas gradasi ditentukan pada ayakan ukuran nominal maksimum, ayakan menengah No.8 (2,36 mm) dan ayakan terkecil No. 200 (0,075mm)

6.2 Berat jenis campuran agregat

Untuk penggunaan campuran agregat slag dengan bahan lainnya, digunakan rumus berat jenis campuran agregat sebagai berikut:

\[
\text{BJ} = \frac{P_1 \times BJ_1 + P_2 \times BJ_2 + P_3 \times BJ_3}{100}
\]

dengan pengertian:
P 1 – P 3 adalah persentase berat dari masing-masing agregat dalam campuran
BJ 1 – BJ 3 adalah berat jenis dari masing-masing agregat dalam campuran

Bila penyerapan air oleh agregat < 1% digunakan BJ bulk
Bila penyerapan air oleh agregat > 1% digunakan rata-rata BJ bulk + BJ apparent (BS 594 part 1, 1973).

6.3 Komposisi umum dari campuran

Campuran beraspal dengan agregat slag terdiri atas agregat slag besi dan baja dan aspal. Campuran beraspal panas tersebut harus memiliki sifat-sifat sebagaimana yang diisyaratkan dalam tabel 7 sampai tabel 10.
Tabel 8 Ketentuan sifat-sifat campuran Lataston untuk lalu-lintas rencana < 1 juta ESA

<table>
<thead>
<tr>
<th>Sifat – sifat campuran</th>
<th>Lataston</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>Penyerapan aspal, (%)</td>
<td>maks.</td>
</tr>
<tr>
<td>Jumlah tumbukan per bidang</td>
<td></td>
</tr>
<tr>
<td>Rongga dalam campuran, VIM, (%) (3)</td>
<td>min.</td>
</tr>
<tr>
<td></td>
<td>maks.</td>
</tr>
<tr>
<td>Rongga dalam Agregat, VMA, (%)</td>
<td>min.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rongga terisi aspal, VFB, (%)</td>
<td>min.</td>
</tr>
<tr>
<td>Stabilitas Marshall, (kg)</td>
<td>min.</td>
</tr>
<tr>
<td>Pelelehan, (mm)</td>
<td>min.</td>
</tr>
<tr>
<td>Marshall Quotient, (kg/mm)</td>
<td>min.</td>
</tr>
<tr>
<td>Stabilitas Marshall sisa (%) setelah perendaman selama 24 jam, 60 °C (4)</td>
<td>min.</td>
</tr>
<tr>
<td>Rongga dalam campuran (%) pada (2) kepadatan membal (Refusal)</td>
<td>min.</td>
</tr>
</tbody>
</table>

Tabel 9 Ketentuan sifat-sifat campuran Laston untuk lalu-lintas rencana antara 1 – 10 juta ESA

<table>
<thead>
<tr>
<th>Sifat – sifat campuran</th>
<th>Laston</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>Penyerapan aspal, (%)</td>
<td>maks.</td>
</tr>
<tr>
<td>Jumlah tumbukan per bidang</td>
<td></td>
</tr>
<tr>
<td>Rongga dalam campuran, VIM, (%) (3)</td>
<td>min.</td>
</tr>
<tr>
<td></td>
<td>maks.</td>
</tr>
<tr>
<td>Rongga dalam Agregat, VMA, (%)</td>
<td>min.</td>
</tr>
<tr>
<td>Rongga terisi aspal, VFB, (%)</td>
<td>min.</td>
</tr>
<tr>
<td>Stabilitas Marshall, (kg)</td>
<td>maks.</td>
</tr>
<tr>
<td>Pelelehan, (mm)</td>
<td>min.</td>
</tr>
<tr>
<td>Marshall Quotient, (kg/mm)</td>
<td>min.</td>
</tr>
<tr>
<td>Stabilitas Marshall sisa (%) setelah perendaman selama 24 jam, 60 °C (4)</td>
<td>min.</td>
</tr>
<tr>
<td>Rongga dalam campuran (%) pada (2) kepadatan membal (refusal)</td>
<td>min.</td>
</tr>
</tbody>
</table>
Tabel 10 Ketentuan sifat-sifat campuran Laston Dimodifikasi (AC Modified) untuk lalu-lintas rencana > 10 Juta ESA

<table>
<thead>
<tr>
<th>Sifat – sifat campuran</th>
<th>Laston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penyerapan aspal, (%)</td>
<td>maks.</td>
</tr>
<tr>
<td>Jumlah tumbukan per bidang</td>
<td>75</td>
</tr>
<tr>
<td>Rongga dalam campuran, VIM (%) (3)</td>
<td>min. 3,5</td>
</tr>
<tr>
<td>Rongga dalam Agregat, (VMA), (%)</td>
<td>min. 15</td>
</tr>
<tr>
<td>Rongga terisi aspal, VFB,(%)</td>
<td>min. 65</td>
</tr>
<tr>
<td>Stabilitas Marshall, (kg)</td>
<td>min. 1000</td>
</tr>
<tr>
<td>Pelelehan, (mm)</td>
<td>min. 3</td>
</tr>
<tr>
<td>Marshall Quotient, (kg/mm)</td>
<td>min. 300</td>
</tr>
<tr>
<td>Stabilitas Marshall sisa (%) setelah perendaman selama 24 jam, 60 °C (4)</td>
<td>min. 75</td>
</tr>
<tr>
<td>Rongga dalam campuran (%) pada kepadatan membal (Refusal)</td>
<td>min. 2,5</td>
</tr>
<tr>
<td>Stabilitas Dinamis, Lintasan/ mm</td>
<td>min. 2500</td>
</tr>
</tbody>
</table>

CATATAN 2 Untuk menentukan kepadatan membal (refusal), penumbuk bergetar disarankan digunakan untuk menghindari pecahnya butiran agregat dalam campuran. Jika digunakan penumbukan manual jumlah tumbukan per bidang harus 600 untuk cetakan berdiameter 6 in dan 400 untuk cetakan berdiameter 4 in

CATATAN 3 Berat jenis efektif agregat akan dihitung berdasarkan pengujian Berat Jenis Maksimum Agregat (Gmm) (SNI 03-6893-2002)

CATATAN 4 Direksi pekerjaan dapat menyetujui prosedur pengujian AASHTO T 283 sebagai alternatif pengujian kepekaan kadar air. Pengkondisian beku cair (freeze thaw conditioning) tidak diperlukan. Standar minimum untuk diterima 75% kuat tarik sisa.

6.4 Prosedur rancangan campuran

a) Pelaksana disyaratkan untuk menunjukkan semua usulan agregat dan campuran yang memadai berdasarkan hasil pengujian di laboratorium serta hasil percobaan penghamparan campuran yang dibuat di instalasi pencampur aspal, sebelum diperkenankan untuk menghampar setiap campuran beraspal dalam pekerjaan,

c) Contoh agregat diambil dari penampung panas (hot bin) untuk pencampur jenis takaran berat (weight batching plant) maupun pencampur dengan pemasok menerus (continuous feed plant) yang mempunyai penampung panas.
Untuk pencampur dengan pemasok menerus yang tidak mempunyai ayakan di penampung panas contoh diambil dari corong pemasok dingin (cold feed hopper). Meskipun demikian setiap formula campuran rancangan yang ditentukan dari campuran laboratorium harus dianggap berlaku sampai diperkuat oleh hasil percobaan pada instalasi pencampur aspal;

d) Pengujian percobaan campuran laboratorium harus dilaksanakan dalam tiga tahap berikut ini:

1) Memperolah Gradasi Agregat yang sesuai,
 suatu gradasi agregat yang sesuai diperoleh dari penentuan persentase yang sesuai dari masing-masing fraksi agregat

 Bilamana campuran adalah HRS yang bergradasi halus (mendekati batas amplop atas), maka akan diperoleh Rongga dalam agregat (VMA) yang lebih besar. Pasir halus yang digabung dengan agregat pecah akan mempunyai bahan antara 2,36 mm dan 600 mikron yang sesedikit mungkin. Bahan yang lolos ayakan 2,36 mm dan juga tertahan ayakan 600 mikron sebesar 20% masih dapat diterima, akan lebih baik bila 10 - 15%. Bahan bergradasi senjang harus memenuhi ketentuan dalam Tabel 11.

 Campuran Aspal Beton (AC) dapat dibuat bergradasi halus (mendekati batas titik-titik kontrol atas), tetapi akan sulit memperoleh rongga dalam agregat (VMA) yang disyaratkan. Lebih baik digunakan aspal beton bergradasi kasar (mendekati batas titik-titik kontrol bawah);

2) Membuat Formula Campuran Rancangan (FCR)

 Lakukan rancangan dan pemadatan Marshall sampai membal (refusal).

 Perkiraan awal kadar aspal rancangan dapat diperoleh dari rumus dibawah ini:

 \[Pb = 0,035 \% \text{ CA} + 0,045 \% \text{ FA} + 0,18 \% \text{ Filler} + \text{ Konstanta} \]

 dengan pengertian:

 \[\text{Pb} \] = kadar aspal perkiraan

 \[\text{CA} \] = agregat kasar tertahan saringan No. 8

 \[\text{FA} \] = agregat halus lolos saringan No. 8 tertahan No. 200

 \[\text{Filler} \] = agregat halus tertahan saringan No, 200

 Nilai Konstanta sekitar 0,5 - 1,0 untuk AC dan HRS

 Buat benda uji dengan kadar aspal di atas, dibulatkan mendekati 0, 5 %, dengan tiga kadar aspal di atas dan dua kadar aspal di bawah kadar aspal perkiraan awal yang sudah dibulatkan mendekati 0,5% ini. (contoh bilamana rumus memberikan nilai 5,7% dibulatkan menjadi 5,5%, buatlah benda uji dengan kadar aspal 5,5 %, 6 %, 6,5% dan 7%, dibawah dengan 4,5 % dan 5%). Ukurlah berat isi benda uji, stabilitas Marshall, kelelehan dan stabilitas sisa setelah perendaman. Ukur atau hitung kepadatan benda uji pada rongga udara nol (Gmm). Hitunglah Rongga dalam Agregat (VMA), Rongga terisi Aspal (VFB) dan Rongga dalam Campuran (VIM). Gambarkan semua hasil tersebut dalam grafik.

 Buatlah benda uji tambahan dan dipadatkan sampai membal (refusal) dengan menggunakan prosedur PRD - BS 598 untuk tiga kadar aspal (satu memberikan rongga dalam campuran di atas 5%, satu pada 5 % dan satu di bawah 5%) Ukur berat isi benda uji dan hitung kepadatannya.

 Gambarkanlah batas-batas yang disyaratkan dalam grafik untuk setiap parameter yang terdaftar dalam tabel 8 sampai tabel 10. dan tentukan rentang kadar aspal yang memenuhi semua ketentuan dalam spesifikasi. Gambarkan rentang ini dalam skala balok seperti yang ditunjukkan dalam RSNI M-01-2003 Rancangan kadar aspal umumnya mendekati tengah-tengah rentang kadar aspal yang memenuhi semua parameter yang disyaratkan.
Suatu campuran yang sesuai harus memenuhi semua kriteria dalam tabel 8 sampai tabel 10 dengan suatu Rentang Kadar Aspal Praktis. Rentang kadar aspal untuk campuran aspal yang memenuhi semua kriteria rancangan harus mendekati (atau lebih besar dari) satu persen. Rentang kadar aspal ini dimaksudkan untuk mengakomodir fluktuasi yang sesungguhnya dalam produksi campuran aspal.

3) Memperoleh persetujuan Formula Campuran Rancangan (FCR) sebagai Formula Campuran Kerja (FCK)

Nyatakan bahwa rancangan campuran laboratorium telah memenuhi ketentuan dengan membuat campuran di instalasi pencampur aspal dan penghamparan percobaan serta dengan pengulangan pengujian kepadatan laboratorium Marshall dan membal (refusal) pada benda uji yang diambil dari instalasi pencampur aspal.

6.5 Formula campuran rancangan (FCR)
Paling sedikit 30 hari sebelum dimulainya pekerjaan aspal, Pelaksana harus menyerahkan secara tertulis kepada Direksi, usulan Formula Campuran Rancangan (FCR) untuk campuran yang akan digunakan dalam pekerjaan. Rumus yang diserahkan harus menentukan untuk campuran berikut ini:

a) ukuran nominal maksimum partikel;

b) sumber-sumber agregat;

c) persentase masing-masing fraksi agregat dari bin dingin dan bin-panas;

d) gradasi gabungan agregat yang memenuhi gradasi yang disyaratkan sesuai tabel 7;

e) kadar aspal total dan efektif terhadap berat total campuran;

f) suatu temperatur tunggal saat campuran dikeluarkan dari alat pengaduk.

Dalam tujuh hari harus dilakukan hal-hal berikut:

1) menyatakan bahwa usulan rancana campuran memenuhi spesifikasi dan mengijinkan pelaksana untuk menyiapkan instalasi pencampur aspal dan penghamparan percobaan;

b) menolak usulan campuran jika tidak memenuhi spesifikasi.

Selanjutnya pelaksana harus melakukan percobaan campuran tambahan dengan biaya sendiri untuk memperoleh suatu campuran rancangan yang memenuhi spesifikasi. Direksi menyarankan pelaksana untuk memodifikasi sebagian rumus rancangannya atau mencoba agregat lainnya.

Bagaimanapun juga pembuatan suatu rumus campuran rancangan yang memenuhi ketentuan merupakan tanggung jawab pelaksana.

6.6 Formula campuran kerja (FCK)
Percobaan campuran di instalasi pencampur aspal dan penghamparan percobaan di lapangan dilakukan untuk memperoleh persetujuan sebagai formula campuran kerja (FCK).

Hasil pengujian harus dibandingkan dengan Tabel 8 sampai tabel 10. Jika hasil percobaan ternyata gagal memenuhi spesifikasi, maka dalam hal apapun harus diadakan penyesuaian yang diperlukan dan percobaan diulangi.

6.7 Penerapan formula campuran kerja (FCK) dan toleransi campuran kerja (TCK)

a) Seluruh campuran yang sudah terpasang dalam pekerjaan harus sesuai dengan FCK dengan rentang toleransi yang ditentukan dalam Tabel 11;

<table>
<thead>
<tr>
<th>Agregat gabungan lolos ayakan</th>
<th>Toleransi campuran kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sama atau lebih besar dari no.8 (2,36mm)</td>
<td>±5% berat total agregat</td>
</tr>
<tr>
<td>• No.8 (2,36 mm) sampai no.50 (0,28 mm)</td>
<td>±3% berat total agregat</td>
</tr>
<tr>
<td>• No. 100 tertahan no.200(0,075mm),</td>
<td>±2% berat total agregat</td>
</tr>
<tr>
<td>• No.200(0,075 mm)</td>
<td>±1% berat total agregat</td>
</tr>
<tr>
<td>Kadar Aspal</td>
<td>±0,3% berat total campuran</td>
</tr>
<tr>
<td>Temperatur Campuran:</td>
<td>±10 °C</td>
</tr>
<tr>
<td>Bahan campuran meninggalkan AMP dan dikirim ke</td>
<td></td>
</tr>
<tr>
<td>tempat penghamparan.</td>
<td></td>
</tr>
</tbody>
</table>

b) Contoh bahan dan campuran beraspal harus diambil sesuai dengan yang disyaratkan. Setiap bahan yang tidak memenuhi batasan-batasan dalam FCK dan toleransi campuran kerja tidak boleh digunakan;

c) Jika komponen bahan memenuhi batas-batas yang dibuat dalam FCK dan TCK tetapi menunjukkan perubahan yang konsisten dan cukup berarti atau yang tidak dapat diterima atau sumber bahan berubah, maka harus dibuat FCK baru;

d) Penilaian toleransi campuran kerja;
 Batasan-batasan mutlak dalam FCK dan TCK adalah merupakan batasan yang tidak boleh dilanggar.

7 Pelaksanaan

Ketentuan mengenai instalasi pencampur aspal, alat penghampar, pembentuk dan alat pemadat, serta tata cara produksi, penghamparan, dan pengendalian maupun uji mutu di lapangan mengikuti spesifikasi dan manual yang berlaku untuk campuran beraspal panas.
8 Pengukuran dan pembayaran

1) Pengukuran Pekerjaan

a) Kuantitas yang diukur untuk pembayaran campuran beraspal haruslah berdasarkan pada beberapa penyesuaian di bawah ini:

i) untuk bahan lapisan permukaan (HRS-WC dan AC-WC) jumlah per meter persegi dari bahan yang dihampar dan diterima, yang dihitung sebagai hasil perkalian dari panjang ruas yang diukur dan lebar yang diterima;

ii) untuk bahan lapisan perkuatan (HRS-Base, AC-BC dan AC-Base) jumlah meter kubik dari bahan yang telah dihampar dan diterima, yang dihitung sebagai hasil perkalian luas lokasi dan tebal yang diterima.

b) Kuantitas yang diterima untuk pengukuran tidak boleh meliputi lokasi dengan tebal hamparan kurang dari tebal minimum yang dapat diterima atau setiap bagian yang terkelupas, terbelah, retak atau menipis (tapered) disepanjang tepi perkerasan atau di tempat lainnya. Lokasi dengan kadar aspal yang tidak memenuhi ketentuan toleransi yang diberikan dalam spesifikasi tidak akan diterima untuk pembayaran;

c) Campuran aspal yang dihampar langsung di atas permukaan aspal lama yang dilaksanakan pada kontrak yang lalu, menurut pendapat Direksi memerlukan koreksi bentuk yang cukup besar, harus dihitung berdasarkan tebal rata-rata yang diterima yang dihitung berdasarkan berat campuran beraspal yang diperoleh dari penimbangan muatan di rumah timbang dibagi dengan luas penghamparan aktual dan kepadatan lapangan hasil pengujian benda uji inti (core), dan luas lokasi penghamparan yang diterima. Bilamana tebal rata-rata campuran beraspal yang telah diperhitungkan, melebihi dari tebal aktual dibutuhkan (diperlukan untuk perbaikan bentuk), maka tebal rata-rata yang ditentukan dan diterima oleh Direksi harus berdasarkan atas suatu perhitungan yang tidak berat sebelah dari tebal rata-rata yang dibutuhkan;

d) Kecuali yang disebutkan dalam (c) di atas, maka tebal campuran beraspal yang diukur untuk pembayaran tidak boleh lebih besar dari tebal nominal rancangan yang ditunjukkan dalam Tabel 1. atau tebal rancangan yang ditentukan dalam Gambar Rencana.

Direksi dapat menyetujui atau menerima suatu ketebalan yang kurang berdasarkan pertimbangan teknis atau suatu ketebalan lebih untuk lapis perata seperti yang diijinkan, maka pembayaran campuran beraspal akan dihitung berdasarkan luas atau volume hamparan yang dikoreksi menurut butir h) dibawah dengan menggunakan faktor koreksi berikut ini:

\[C_t = \frac{\text{Tebal nominal yang diterima}}{\text{Tebal nominal rancangan}} \]

Tidak ada penyesuaian luas atau volume hamparan seperti di atas yang dapat diterapkan untuk ketebalan yang melebihi tebal nominal bila campuran beraspal tersebut dihampar di atas permukaan yang juga dikerjakan dalam kontrak ini, kecuali jika diperintahkan lain oleh Direksi atau ditunjukkan dalam Gambar Rencana;

e) Lebar hamparan campuran beraspal yang akan dibayar harus seperti yang ditunjukkan dalam Gambar dan harus diukur dengan pita ukur oleh Pelaksana di bawah pengawasan Direksi. Pengukuran harus dilakukan tegak lurus sumbu jalan dan tidak termasuk lokasi hamparan yang tipis atau tidak memenuhi ketentuan sepanjang tepi hamparan. Interval jarak pengukuran memanjang harus seperti yang diperintahkan oleh Direksi tetapi harus selalu berjarak sama dan tidak kurang dari 25 meter. Lebar yang akan digunakan dalam menghitung luas untuk
pembayaran setiap lokasi perkerasan yang diukur, harus merupakan lebar rata-rata yang diukur dan disetujui;

f) Pelapisan campuran beraspal dalam arah memanjang harus diukur sepanjang sumbu jalan dengan menggunakan prosedur pengukuran standar ilmu ukur tanah;

g) Bilamana Direksi menerima setiap campuran beraspal dengan kadar aspal rata-rata lebih rendah dari kadar aspal yang ditetapkan dalam formula campuran rancangan. Pembayaran campuran beraspal akan dihitung berdasarkan luas atau volume hamparan yang dikoreksi menurut butir h) di bawah dengan menggunakan faktor koreksi berikut ini. Tidak ada penyesuaian yang akan dibuat untuk kadar aspal yang dilampaui nilai yang disyaratkan dalam formula campuran rancangan;

\[C_b = \frac{\text{Kadar aspal rata-rata yang diperolah dari hasil ekstraksi}}{\text{Kadar aspal yang ditetapkan dalam formula rancangan kerja}} \]

h) Luas atau volume yang digunakan untuk pembayaran adalah:
 luas atau volume seperti yang disebutkan dalam butir a) di atas \(C_t \times C_b \)
 Bila tidak terdapat penyesuaian maka faktor koreksi \(C_t \) dan \(C_b \) diambil satu Khusus untuk campuran menggunakan agregat slag, digunakan perhitungan dalam ton (lihat tabel 12) kecuali bila agregat slag digunakan sebagian saja;

i) Bilamana perbaikan pada campuran aspal yang tidak memenuhi ketentuan telah diperintahkan oleh Dierksi sesuai yang disyaratkan, maka kuantitas yang diukur untuk pembayaran haruslah kuantitas yang akan dibayar bila pekerjaan semua dapat diterima. Tidak ada pembayaran tambahan untuk pekerjaan atau kuantitas tambahan yang diperlukan untuk perbaikan tersebut;

j) Kadar aspal aktul (kadar aspal efektif + penyerapan aspal) yang digunakan Pelaksana dalam menghitung harga satuan untuk berbagai campuran aspal yang termasuk dalam penawarannya haruslah berdasarkan perhitungan harga satuan dalam perkiraannya sendiri. Tidak ada penyesuaian harga yang akan dibuat sehubungan dengan perbedaan kadar aspal yang disetujui dalam formula campuran kerja dan kadar aspal dalam analisa harga satuan dalam penawaran;

2) Dasar pembayaran
 Kuantitas yang sesuai dengan ketentuan di atas, harus dibayar menurut Harga Kontrak per satuan pengukuran, untuk Mata pembayaran yang ditunjukkan di bawah ini dan dalam Daftar Kuantitas dan Harga, dimana harga dan pembayaran tersebut harus merupakan kompensasi penuh untuk mengadakan dan memproduksi dan mencampur serta menghampar semua bahan, termasuk semua pekerja, peralatan, pengujian, perkakas dan perlengkapan lainnya yang diperlukan untuk menyelesaikan pekerjaan yang diuraikan dalam Seksi ini.
<table>
<thead>
<tr>
<th>NOMOR MATA PEMBAYARAN</th>
<th>URAIAN</th>
<th>SATUAN PENGUKURAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 (3 a)</td>
<td>Lataston Lapis Aus (HRS – WC)Leveling</td>
<td>Ton</td>
</tr>
<tr>
<td>6.3 (4 a)</td>
<td>Lataston Lapis Pondasi (HRS – Base)Leveling</td>
<td>Ton</td>
</tr>
<tr>
<td>6.3 (5 c)</td>
<td>Laston Lapis Aus (AC-WC) Leveling</td>
<td>Ton</td>
</tr>
<tr>
<td>6.3 (5 d)</td>
<td>Laston Lapis Aus (AC-WC) Modifikasi Leveling</td>
<td>Ton</td>
</tr>
<tr>
<td>6.3 (6 c)</td>
<td>Laston Lapis Antara (AC-BC) Leveling</td>
<td>Ton</td>
</tr>
<tr>
<td>6.3 (6 d)</td>
<td>Laston Lapis Antara (AC-BC) Modifikasi Leveling</td>
<td>Ton</td>
</tr>
<tr>
<td>6.3 (7 c)</td>
<td>Laston Lapis Pondasi (AC-Base)Leveling</td>
<td>Ton</td>
</tr>
<tr>
<td>6.3 (7 d)</td>
<td>Laston Lapis Pondasi (AC-Base)Modifikasi Leveling</td>
<td>Ton</td>
</tr>
</tbody>
</table>

Catatan:
Mata pembayaran dalam Ton, mengingat jumlah tonase campuran beraspal menggunakan agregat slag lebih tinggi, tetapi volume rendah, kecuali bila slag digunakan sebagai campuran dengan bahan lainnya.
Lampiran A
(informatif)

Gambar 1 Proses produksi dari slag

Gambar 2 Agregat slag
Gambar 3 Bagan alir pembuatan formula campuran kerja (FCK)

1. Mulai
 - Evaluasi jenis campuran dan persyaratannya
 - Kesesuaian mutu bahan / slag dengan spesifikasi
 - Ya
 - Kesesuaian peralatan dengan standar pengujian
 - tidak
 - Ganti bahan
 - Ya
 - Pembuatan FCR untuk mengetahui karateristik campuran dari bin dingin
 - tidak
 - Perbaikan alat atau ganti alat uji
 - ya
 - Kesesuaian karakteristik campuran dengan spesifikasi
 - tidak
 - Perbaikan alat atau ganti alat uji
 - ya
 - Kalibrasi bukaan bin dingin dan menentukan bukaannya. Selanjutnya pengambilan contoh dari bin panas dan diuji gradasinya
 - Penentuan komposisi tiap bin sesuai gradasi rencana, selanjutnya pembuatan FCR untuk mengetahui karakteristik campuran. Hasil yang diperoleh dievaluasi untuk menentukan kadar aspal optimum
 - Uji coba pencampuran di AMP untuk melihat kesesuaian operasional dengan rencana (sebelumnya periksa kondisi AMP)
 - tidak
 - Sesuai dengan rencana
 - Ya
 - Uji coba pemadatan di lapangan untuk menentukan jumlah lintasan pemadat
 - Campuran beraspal mudah dipadatkan
 - tidak
 - Perubahan gradasi atau penambatan pasir pada proporsi yang diijinkan
 - ya
 - Pengesahan FCR menjadi FCK (selesai)
Lampiran C
(informatif)
Daftar nama dan lembaga

1) Pemrakarsa
Pusat penelitian dan Pengembangan Prasarana Transportasi, Badan Penelitian dan
Pengembangan ex. Departemen Kimpraswil.

2) Penyusun

<table>
<thead>
<tr>
<th>Nama</th>
<th>Lembaga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dra. Leksminingsih</td>
<td>Pusat Litbang Prasarana Transportasi</td>
</tr>
<tr>
<td>Bongsu Samosir, ST</td>
<td>Pusat Litbang Prasarana Transportasi</td>
</tr>
</tbody>
</table>
Daftar Notasi

<table>
<thead>
<tr>
<th>Notasi</th>
<th>Arti</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Asphaltic Concrete</td>
</tr>
<tr>
<td>AC-BC</td>
<td>Asphaltic Concrete – Binder Coarse</td>
</tr>
<tr>
<td>AC-Base</td>
<td>Asphaltic Concrete-Base</td>
</tr>
<tr>
<td>Pen</td>
<td>penetrasi</td>
</tr>
<tr>
<td>FCK</td>
<td>Formula Campuran Kerja = JMF (Job Mix Formula)</td>
</tr>
<tr>
<td>FCR</td>
<td>Formula Campuran Rencana = DMF (Design Mix Formula)</td>
</tr>
<tr>
<td>AMP</td>
<td>Asphalt Mixing Plant = Unit Pencampur Aspal</td>
</tr>
</tbody>
</table>

Bibliografi

- Pengunaan agregat slag sebagai bahan perkerasan jalan (2003), Laporan Penelitian Pusran No. 16.2.02.4.02.03